离心通风机管道共振和检查处理措施
风机的进出口管段风速很高,柜式离心通风机,高速穿行的风会扰动管道,使管道发生共振。一般情况下,风机进出口管是靠法兰和叶轮壳体刚性连接的,管道的振动必然传到壳体上,而壳体通常和轴承座相连,壳体振动又引起轴承座振动,最终导致致整台风机发生振动。此类振动的预防处理措施为:
(1)检查离心通风机壳体,如壳体存在裂纹的或磨损及其腐蚀严重的,应加固或整体更换;
(2)在振动比较明显的管段上加装管道减震器,使管道与风机壳体呈柔性连接,减小或缓冲振动。常用的管道减震器,如KTX 可曲绕橡胶接头,即管道减震器,一般安装于靠近风机出口端,减震效果比较明显。另外,有些管道补偿器如填料式补偿器、波形补偿器也可以起到减震作用;
(3)在条件允许下可优化出口管道,一般来说,弯头处更容易发生扰动管道而造成振动的现象,所以风机出口段宜有不小于5 m 的直段,以减少出口阻力损失,达到顺畅输送介质的目的;
(4)进口调节阀宜优先选用叶片阀,它在工作时能实现管道内输送介质的均匀分布,离心通风机型号,防止产生剧烈涡流而发生振动。上文阐述的引起风机振动的因素只是本人原所在企业常见的,当然不排除其他类型的风机会有其他的因素。在实际工作中,不能孤立、片面地把振动的原因归结于某一项因素,也有可能是这四种因素共同作用的结果。因此,在分析离心通风机振动故障时,应该根据振动特征具体分析,事实求是地综合考虑,只有这样,才能准确、快捷地找出振动原因,消除振动故障。
为研究后离心通风机叶轮的流场及噪声问题,采用三维建模软件UG对现有叶轮进行逆向建模,提取出叶轮的几何模型,运用Hypermesh对叶轮模型进行网格划分,然后采用Fluent软件模拟了叶轮三维粘性定常流动特性,分析了叶轮内部流动情况,在此基础上对叶轮模型进行噪声分析,得到流场模拟和噪声分析结果,为叶轮优化设计提供理论依据。
离心通风机作为干燥、通风类家电产品的重要组成部件,其性能直接影响着家电产品质量的高低。随着现代生活对节能、环保等要求日益提高,开发高效、低噪风机成为必然趋势。离心式通风机的工作介质为气体,工作过程中会产生气动噪声、机械噪声和气固耦合噪声,其中气动噪声是主要噪声,约占到总噪声的45%左右。风机气动噪声主要由离散噪声(旋转噪声)和湍流噪声组成。高速高压离心风机旋转噪声较高,低速低压风机以湍流噪声为主。且基频噪声和宽频噪声在风机中不同程度的存在。目前对离心式通风机降噪研究还处于试验为主的研究阶段,但试验研究成本较大、周期较长,这对离心通风机产品开发非常不利。此外,影响离心式通风机气动噪声的因素众多,设计所得结果的降噪机理难以被系统揭示。数值模拟方法能够提供风机的内部流场信息和噪声分布情况,有利于准确认识离心式通风机噪声产生机理和降噪原理,为进一步推广降噪设计的方法提供依据。所以,高压离心通风机,对离心式通风机数值模拟的研究是非常必要的。
蜗壳优化对离心通风机金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,潍坊离心通风机,缩小了离心通风机工作的范围,影响了金属叶轮的平稳运行。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。从而保证金属叶轮的平稳运行。
电机优化对离心通风机金属叶轮稳定运行的影响吸油烟机、空调系统等设备空间较小,为了节省空间,一般会使用内藏电动机设备。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。对内藏电动机的形状设计不当会增加金属叶轮内部的流动损失,从而导致噪声增大,离心风机性能降低。电动机的轴向长度和气流的排挤率呈正相关的关系。叶轮进口处的流道变窄会使前盘处脱流区域变大,从而导致金属叶轮内部损失增加。因此,在设计电机形状时,应充分考虑电机形状对叶轮内部流动的影响,从而提高金属叶轮的稳定性,确保离心风机的性能。
潍坊离心通风机-冠熙风机 让您放心-柜式离心通风机由山东冠熙环保设备有限公司提供。山东冠熙环保设备有限公司(www.sdgxhb.cn)为客户提供“轴流风机,耐高温高湿风机,烘干设备用风机,离心风机,除尘风机”等业务,公司拥有“山东冠熙,万通风机”等品牌。专注于风机、排风设备等行业,在山东 潍坊 有一定知名度。欢迎来电垂询,联系人:李海伟。